An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model
نویسندگان
چکیده
In the characterization of elastic properties of tissue using dynamic optical coherence elastography, shear/surface waves are propagated and tracked in order to estimate speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the e®ectiveness of peak tracking approaches, and leading to biased estimates of wave speed. Further, plane wave propagation is sometimes assumed, which contributes to estimation errors. Therefore, we invert a wave propagation model that incorporates propagation, decay, and distortion of pulses in a dispersive media in order to accurately estimate its elastic and viscous components. The model uses a general ̄rst-order approximation of dispersion, avoiding the use of any particular rheological model of tissue. Experiments are conducted in elastic and viscoelastic tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation and measuring the wave propagation using a Fourier domain optical coherence tomography system. Results con ̄rmed the e®ectiveness of the inversion method in estimating viscoelastic parameters in both the viscoelastic and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of a fresh porcine cornea was conducted. Preliminary results validate this approach when compared to other methods.
منابع مشابه
Wave propagation theory in offshore applications
A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...
متن کاملRheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave in Non-Homogeneous Viscoelastic Rods
This study is concerned to check the validity and applicability of a five parameter viscoelastic model for harmonic wave propagating in the non-homogeneous viscoelastic rods of varying density. The constitutive relation for five parameter model is first developed and validity of these relations is checked. The non-homogeneous viscoelastic rods are assumed to be initially unstressed and at rest....
متن کاملWave Propagation Approach to Fluid Filled Submerged Visco-Elastic Finite Cylindrical Shells
Multi-layer orthotropic finite cylindrical shells with a viscoelastic core in contact with fluids are gaining increasing importance in engineering. Vibrational control of these structures is essential at higher modes. In this study, an extended version of the wave propagation approach using first-order shear deformation theory of shell motion is employed to examine the free vibration of damped ...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کامل